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A PoissonVlasov algorithm has been constructed that solves three-dimensional (3-D) 
sheath problems. It can be used for accelerator design for intense ion beams extracted from a 
plasma. It has an advantage over an existing finite element algorithm in that it is much more 
accurate per unit time spent. I(“’ 1986 Academsc Press, inc. 

1. INTRODUCTION 

Multidimensional sheath configurations are common in practice. However, com- 
puter modeling of even a collisionless sheath in more than one dimension is not yet 
common. A critical use for such an analysis is in the design of high-density ion 
accelerators in which the ions are extracted from a plasma. The analysis is not 
entirely straightforward partially because of the highly nonlinear structure of the 
equations, 

V’rp=j.fdv-e 4, (1) 

Vqs.V,,f +v.yf’=o, (2) 

where 4 is the electrostatic potential and ,f is the ion distribution function. These 
equations are fully coupled through the ion space charge term (the first term on the 
right side of Eq. (1)) and the acceleration term (V4 in Eq. (2)). The nonlinearity of 
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FIG. 1. A typical situation in which a multidimensional Poisson-Vlasov solution is important. 

the equations is self-evident; however, the situation is exacerbated by the fact that 
the exponential nonlinear term on the right side of Eq. (1) is very large and almost 
canceling with the ion space charge term. This happens in the extraction plasma. In 
addition, the ions are traveling relatively slowly in this presheath region and are 
thus highly affected by the electric fields present. It is this combination of large sen- 
sitivity to small residuals from large nonlinear terms that has kept other workers 
from conquering this problem. Ion extraction codes either assume some sort of 
space-charge-limited flow and neglect explicit considerations of the plasma electrons 
altogether [l] or consider only the acceleration region, where there is no plasma, 
along with that part of the sheath up to where the electron density is only on the 
order of half the ion density [2]. Such ploys are hoped to be somewhat applicable 
where the sheath is one-dimensional (1-D) but can be expected to fail when the 
sheath is multidimensional [ 31. 

A typical situation in which a multidimensional Poisson-Vlasov solution is 
important is shown in Fig. 1. The figure could refer to part of a device used for (1) 
ion implantation, (2) a plasma diagnostic beam, or (3) a neutral beam generator. In 
the source plasma, the ion and electron densities are approximately equal, Ions 
leaving the plasma are accelerated by the applied electric fields, leaving behind a 
sheath-a continuous transition between the region where the source plasma is and 
where it is not. (See Figs. 2 and 3.) Algorithms solving the full nonlinear equations 
generate the sheath automatically without any need to specify nontrivial boundary 
data. Such algorithms [4-61 exist in two dimensions. These algorithms have met 
with considerable experimental confirmation [7] and are now used as design tools 
[S]. A three-dimensional (3-D) algorithm that also solved the nonlinear plasma 
extraction problem [9] was constructed and enjoyed some preliminary application 



22 WHEALTON, MC GAFFEY, AND MESZAROS 

FIG. 2. A view of an extraction sheath showing equipotential surfaces. 

[lo]. However, the calculation of even the coarsest element configuration strained 
the memory resources of the CRAY-I computer [placed at the Lawrence Livermore 
National Laboratory (LLNL) for fusion work] and took the better part of an hour 
for execution. The algorithm described here is currently operated on a PDP-10 
using an order of magnitude less memory while being an order of magnitude faster 
and solving a problem that is .an order of magnitude more refined. Results using 
this algorithm will be illustrated. 

2. THE ALGORITHM 

Equation (1) is solved in a finite difference approximation. With reference to 
Fig. 3, first-order differences are as follows: 

For Cartesian coordinates that are not near boundaries, h is unity. Boundaries are 
accounted for by adjusting the values of h near a boundary, as illustrated for an 
inhomogeneous Dirichlet boundary in Fig. 4 using the algorithm produced in 
Ref. [ll]. 

Analogous expressions to Eq. (3) for a2d/ay2 and a2#az2 are easily obtainable. 
For the Laplace operator, we therefore have 

v24=f(hi9 903 4ih i = 1, 2 ,..., 6, 
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FIG. 3. Notation used for finite differences. 

which when solved for &, becomes 

40 = k;4i, i- 1, 2 ,..., 6, 

where k, is evaluated in Appendix A. For inhomogeneous terms, S, to the Laplace 
equation, 

Q. = kid + S/h,, i = 1, 2,. . . , 6. (4) 

DIRICHLET BOUNDARY 

h2, h4<i 
h,: h5’l 

FIG. 4. Notation used for finite differences near a boundary. 
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In the absence of source terms, a standard expeditious technique is to iterate Eq. (4) 
over the region by a Gauss-Seidel [ 12, 131 implicit method. To apply this method 
for the nth iteration to &, the latest iteration for dj is used so that 

~b”‘=k,~~‘+k2~~‘+k3~~‘+k4~~~1’+ks~~~’)+ko~b”~”. (5) 

Equation (5) expresses the notion that generally three of the neighboring values of 
4 are of the same order of iteration as the present value, and the other three are of 
the previous value. To use this method (relatively implicit) as opposed to the 
explicit method, 

generally converges faster. Using successive overrelaxation (SOR) to produce 

q$b”‘=~&y’+(l -p)qjb”-” (6) 

as in Ref. [ 1 I], makes the solution converge much faster for fl- 1.8, as opposed to 
/I= 1. 

The iterative technique previously described uses only 7n words of memory, 
where n is the number of nodes (typically 103-lo4 when using a PDP-10). A 
straightforward inversion of the matrix of coefficients for the n equations would 
require n* words of memory. It is very difficult to quasi-diagonalize the matrix to 
such an extent that the memory requirements are competitive with 7n. Frequently, 
the computational time is also larger with the direct inversion, since the number of 
computations is generally larger, even considering that there may be a hundred 
iterations in the process of Eqs. (5) and (6). This increase in computational time 
was certainly found to be the case in comparing the efforts of Ref. [9] with this 
work. 

Techniques developed to solve the Poisson equation with the inhomogeneous 
terms in Eq. (1) are less standard. This is because both terms are very nonlinear, are 
almost equal, and have opposite signs, exacerbating any numerical difficulties. A 
Newton method [6] generally suffices to solve the Poisson equation, 

for the cases under consideration [7, S]. For a function as shown in Fig. 5, the root 
x0 is improved to x1 by the construction shown or 

XI = x0 -f(xow’(xo)~ 

This can be repeated as many times as desired. For the solution to Laplace’s 
equation [Eq. (5)], the Newton method is implemented by 

(7) 
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I 
FIG. 5. Illustration of function for which the Newton method converges. 

where m is the number of Newton iterations and $p”’ is the solution to the 
homogeneous Laplace equation. In practice it is seldom necessary to resort to more 
than one Newton iteration since the number of iterations over the mesh, n, and the 
number of Vlasov iterations give plenty of opportunities to calculate to high 
accuracy all the nonlinearities of the behavior of the solution. Applying Eq. (6) after 
Eq. (7) corresponds to a Newton SOR iterative method about which a domain of 
convergence has been proven [ 141. Unfortunately, we never operate in this domain 
(i.e., b d 1 for an e-4 inhomogeneous term) in order to spare the resources. 
However, whenever we have chosen to check against the solutions in this 
established domain, the solutions have agreed within the limits of the machine 
precision. The domain of convergence is substantially larger than that established 
by Ref. [14]. 

It remains now to describe the algorithm for solving Eq. (2) to get the first 
inhomogeneous term to the Poisson equation [Eq. (1 )]. Ion orbits are computed in 
the volume of interest, and from the properties of these orbits the desired quantities 
are obtained. We assume in each cell for which the Poisson equation is solved that 
the electric field vector is a constant, from which it follows that the ion trajectory is 
a parabola in each transverse coordinate. The algorithm is shown in Fig. 6. Since 
the acceleration interpolator [ 11, 131 computes the electric fields on each of eight 
nodes of a cell, the electric field is linearly varying within a cell. It is worthwhile to 
refine the trajectory computation (when warranted) to get a more accurate result 
without decreasing the mesh size. As in Ref. [ 151, the Vlasov solver is made self- 
regulating in accuracy, whereupon trajectory refinement is undertaken only in those 
places that need it. The trajectories are piecewise parabolas. Refining the trajec- 
tories and selecting the point at which such refinement is desirable are major factors 
in drastically reducing the computational time. The solution to the Vlasov equation 
[Eq. (2)] is generally more time consuming than that of Eq. (1) by a factor of 10. 
As denoted by z in Fig. 6, an axis (generally the axis parallel to the average 
acceleration fields) is incremented for the orbits in the fashion shown in Fig. 6. 
However, no restriction is placed on the orbit’s allowable motion. 
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FIG. 6. Algorithm for Vlasov equation. 

The trivial relationship between the coordinates inside an element and the global 
elements for the uniform Cartesian grid used in this algorithm allows orders-of- 
magnitude savings in the Vlasov solver over that employed in the irregular elements 
of Ref. [9]. The charge deposition is done in a straightforward manner, knowing 
the velocity of each trajectory and the charge it carries. Full coupling of the 
equation is done by iteration, as shown in Fig. 7. Typically, about 6 to 20 major 
iterations need to be performed before the solutions to Eqs. (1) and (2) converge. 



3-D POISSON-VLASOVALGORITHM 27 

I 
ITERATE 
v20= n-e-Q 
NEWTON SOR 
A FIXED NUMBER 
OF TIMES 
(TYPICALLY lo-1OOJ 

STOP 

FIG. 7. Algorithm for Poisson-Vlasov iteration. 

3. EXAMPLE 

We consider a square aperture. A view along a symmetry semiplane, x = 0, is 
shown in Fig. 8. The dotted lines are the equipotentials of the electrostatic field; the 
solid lines are ion trajectories, which go from left to right. On the left, y = 0, is the 
source plasma; on the right is the acceleration column. The high density of 
equipotentials near the left is the sheath that was alluded to in the introduction. 

FIG. 8. A view of a symmetrical semiplane of a square aperture; the source plasma is located on the 
left side. 



28 WHEALTON, MC GAFFEY, AND MESZAROS 

160 

FIG. 9. A view of the entire square aperture extraction area. 

Equipotentials near the plasma and through the sheath are spaced exponentially. 
The potential plunges by two orders of magnitude over only 5 % of the axial dis- 
tance y. Figure 9 is a view of the entire device, where the viewer’s position is at 
large positive values of x and z and large negative values of y, similar to Fig. 1. The 
boundary data are shown, as well as the trajectories, for the final Vlasov iteration. 
Figure 8 corresponds to a plane at x = 0. A view similar to Fig. 8 but comprising all 
the planes (with the three closest to the viewer at the end of the electrode) is shown 
in Fig. 10 (viewed from large x). A view from the top of the device (large z) is 

160 1 

60 

6 4b sb 420 160 200 240 
Y 

FIG. 10. A view of the device shown in Fig. 9 for large X. 
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FIG. 11. A view of the device shown in Fig. 9 for large z. 

shown in Fig. 11. A view from the plasma (large negative v) is shown in Fig. 12. 
The likeness of the solutions shown in Figs. 10 and 11 and the degree of diagonal 
symmetry in Fig. 12 indicate that the numerical procedures of the x and z directions 
give the same results, as they should owing to the symmetry of the boundary data 
about this diagonal. Furthermore, the solution for a very elongated position, 
x,%ze, along the symmetry plane gives the same result as the experimentally 
verified 2-D algorithm of Ref. [S]; this is as it must be since the algorithms in the 
limit x, g z, are identical. 

160, 
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x:0 20 40 60 80 100 xe 440 (60 

X 

FIG. 12. A view of the device shown in Fig. 9 for large -y. 
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For the example shown in Figs. 8-12, 1500 trajectories were used to converge the 
Vlasov iteration over 12 iterations. The corresponding number of orbit parabolas 
was 310,000; the number of mesh points was 14,100, for which, in the endeavor to 
solve the Poisson equation, 45 sweeps over the volume were performed with an 
overrelaxation of 1.75. A one-step Newton iteration was used for the nonlinear 
exponential electron term for each of the 12 Vlasov iterations (8 x lo6 algebraic 
local difference equations) solved. This example took -66 min on a PDP-10. 

The example considered in Ref. [9] was reconsidered using this code [ 161, 
except that the number of nodal points was doubled to 3600. The calculation took 
one-tenth as much memory, and the computational time was reduced by a factor of 
~40 (13 min on a PDP-10 vs 40 min on a CRAY-I). The results were the same. 

The most interesting phenomena, which are to be studiously avoided, are the 
aberrations present in the beam as seen by the crossing trajectories in Figs. 8, 10, 
and 11. Figure 13 shows an emittance diagram for the V;, z occupation in phase 
space for the trajectories at the maximum value of y considered in Figs. 8-12. The 
population due to orbits with various initial x (=x0) is shown. An emittance 
diagram for l’,, x occupation in phase space would be identical except for labeling. 
In 2-D geometries much care has been devoted to reducing such aberrations. For 
circular holes [ 171, the matter ends there; however, for slots [ 181, the end of the 
slot requires care to avoid the situation of Fig. 11. It is not sufficient to make the 
slot much longer than it is wide, since the hideous aberrations at the end may cause 
electrode interception by the ion beam with the attendant annoyances of melting 
and breakdown. 

One should not deduce from the preceding simple example that the type of elec- 
trode shape considered is limited; there is no limitation on electrode shapes or 
shapes of Dirichlet boundary conditions. 

FIG. 13. An emittance of the V,, z occupation in phase space for the trajectories at the maximum 
value of y of the device shown in Fig. 9. The ion temperature is zero. 
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